PHYSICS OF FLUIDS VOLUME 12, NUMBER 11 NOVEMBER 2000

Viscous drag of a solid sphere straddling a spherical or flat surface
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The aim of this paper is to compute the friction felt by a solid particle, of radjuscated across

a flat or spherical interface of radi&®& and moving parallel to the interface. This spherical interface
can be a molecular film around an emulsion or aerosol droplet, the membrane of a vesicle or the
soap film of a foam bubble. For simplicity, the acronym VDB is used to refer to either vesicle, drop,
or bubble. The theory is designed as a tool to interpret surface viscosimetry experiments involving
spherical probes attached to films or model membranes, taking care of the finite-size effects when
the film encompasses a finite fluid volume. The surface of the VDB is a two-dimensional fluid,
characterized by dilationaln(g") and shear @*) surface viscosities. The particle intercepts a
circular disc in the interface, whose size depends on the particle penetration inside the VDB. The
three-dimensional fluids inside and outside the interface may be different. The analysis holds in the
low Reynolds number and low capillary number regime. A toroidal X, ,¢) coordinate system is
introduced, which considerably simplifies the geometry of the problem. Then the hydrodynamic
equations and boundary conditions are writtenxinx,,¢. The solution is searched for the
first-order Fourier component of the velocity field in the radial anfyl®eformulating the equations

in “two-vorticity-one-velocity” representation, one basically ends up with a set of equations in
X1,X, only. This set is numerically solved by means of the Alternating-Direction-Implicit method.
Numerical results show that the particle friction is influenced both by the viscosity and by the
finiteness of the VDB volume. Finite-size effects have two origins: a recirculation effect a/iien

is not very small, and an overall rotation of the VDB-particle complex wheiis very large. In
principle, the theory allows for a quantitative determinatiomgfvhatevera/R, including the limit
a/R=0 (flat interface. © 2000 American Institute of Physids$1070-663100)01210-1

I. INTRODUCTION with macroscopic three-dimensional probes, for instance
spherical micron-sized particles on surfactant monoldy8rs
The problem of the motion of a solid particle along an at the water/air interface. This kind of system was theoreti-
interface separating two fluid phases has implications ircally addressed by Danast all! Their approach took into
technological and biological problems: for instance, emul-account both the interfacial viscous properties and the hydro-
sions can be stabilized by solid particles at the oil/water indynamic contribution of the part of the floating particle pro-
terface(Pickering emulsior’$; the mobility of macroscopic truding in the water subphase. However, this approach was
inclusions or of organelles in contact with or across cellvalid only for the air/liquid interface and a limited interval of
membranes also relates to the hydrodynamic problem dighree-phase contact angles at the particle surface. Danov
cussed hereafter. A theory on the motion of a disc along @t al’s theory was worked out for particles which were pre-
viscous interface/membrane was set up by Saffiand dominantly immersed in the water phase, i.e., the contact
later developed by Hughet al? In their approach the disc angle 6 (defined in the liquid phagehad to be less than
has the same thickness as the membrane, which is modeletiout 100°. Recently, experimetftsvere carried out with
as a two-dimensional viscous fluid. The Saffman—Hughegatex microspheres attached to lipid membranes. In this situ-
theory was successfully used to interpret experiments oation, both sides of the film are made of a viscous fluid, and
Brownian motion of disc-like domains in a layer of fluid then both sides of the particle contribute to the friction. The
lipid,® and of proteins in membran@$.The disc problem interpretation of the experimental results in Ref. 12 was
was the matter of subsequent refinements, to include the ebased on regarding the studied system as a superposition of
fect of a wall parallel to the membrarisee the recent com- two ‘“air/water” systems with complementary contact
plete theory by Stone and Ajd&rand references thergin angles, § and 180% 6. However, because of the above-
The disc theory is not directly applicable to experimentsmentioned restriction, the superposition approach is inappli-
cable for spheres with contact angles far from 90°. More-
dAuthor to whom correspondence should be addressed; electronic maif?Ver, Danovet al’s theon}l was elaborated only for flat and
KRASSIMIR.DANOV@LTPH.BOL.BG infinite interfaces. As the particle in the experiments in Ref.
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IIl. MATHEMATICAL FORMULATION OF THE
PROBLEM

z A. Basic equations and boundary conditions

We consider the motion of a particle of radiason a
spherical viscous interface separating two fluid phases, see
Fig. 1(@). The inner and external phases are denatedd g,
respectively. The interface is of finite radiug, and meets
the particle surface along a circular contact line indicated by
L. In Fig. 1,  is the half angle of the cone defined by the
VDB center and. (the limit /=0 corresponds to a flat inter-
face and will be commented on latek , and,; refer to the
o) particle surface and to the spherical interface correspond-
FIG. 1. (a) The problem: a particle of radiwsacross a spherical interface of ingly, while Cp and Ci indicate their centers. We denote by
radi.usl.? separagng two .ﬂuiz phases,andg; (b) detail oIf)the VBD-particle Oxyza system of Car_teSIan coordlpates, Whose origin is at
complex; see text for symbol definitions. the center of the particle contact lineee Fig. 1)]. The

z-coordinate of the particle center =OC,. The particle
moves parallel to the membrane, i.e., in tl@y(Oz) plane
with a translational velocity=(0,V,0) directed along the

) ) ) ) y-axis. We suppose th#te contact line does not move rela-
12 is moving along a closed spherical membrane, i.e., &yely to the surface of the particld@his important assump-
vesicle, the theoretical approach needs to account for thgy, is suggested by the observations of Dietrégthal 13 on
Contribution Of the f|n|te water Volume encompassed insidq)olystyrene particles bound to ||p|d Vesicles' These authors
the vesicle. noticed that the contact angle would remain constant when

Addressing this general problem is the purpose of thighe particle moved on the surface of the vesicle and that the
paper. Our goal is to compute the friction felt by a sphericalmembrane-particle contact line was “pinnéd’to the par-
solid particle straddling the interface of a spherical vesicleticle solid surface. The assumption of contact line pinning
droplet, or bubblgVDB) or flat interface. The interface is has the advantage of considerably simplifying the hydrody-
supposed to be a two-dimensional viscous fluid, charactemamics of the problem. In particular, this eliminates the dif-
ized by dilation and shear surface viscosities. ficulties related to moving contact lines, such as the diver-

In the following section, we start with the basic hydro- gence of the shear rate or the multivaluedness of the flow
dynamic equations and boundary conditions of the problemfield at the contact line? In our description, the flow is ev-
We then introduce a toroidal coordinate system, X,,$),  €rywhere single-valued and regular. Because of pinning of
whose axis contains the particle and the VDB centgrgs  the contact line at the particle surface, rotations of the par-
the polar angle around this axisee Fig. 1b)]. Hydrody- fucle ar.ounde andOy are forbldder]. Rotation arourdz
namic equations are written i,,x,,¢ variables and the IS forbidden by symmetry. The particle movement then re-

solution is searched for the first-order Fourier component irﬁjuces toa _S|mple solid rotat|pn a_lrou_nd the VDB center. The
¢ of the velocity and pressure fields. Reformulating thecorrespondmg angular velocity, is given by

problem in the two-vorticity-one-velocity formalism allows Vtany

us to transform the initial three-space-variable problemintoa ®= m, 1)
two-variable &;,X,) one. The equations are solved numeri-

cally by means of the Alternating-Direction-ImpliciADI) ~ whereb=\/a?—d? is the radius of the particle contact line,
method. Numerical results for the particle friction coefficientb=OL [see Fig. 1a)]. The components of the velocity,,
are given and commented on in Sec. IIl. There we identifyof an arbitrary point on the particle surfacg,, in the cy-
the influences of the surface viscosity and of the finiteness dfndrical coordinate systen©r ¢z [see Fig. )], are

the VDB v.olume.. As we yvill' see, finite-size effects involve vpr=[V+w(z,—d)]sing,

both a recirculation flow inside the VDB and an overall ro- '

tation of the VDB-particle complex when the interface is Vp,o=[V+w(z,—d)]cose, 2
very viscous. A paragraph in Sec. lll is dedicated to the )

limiting case of a flat infinite membrane. There we analyze ~ ¥p.z= ~ @fpSiN®,

the way in which the friction felt py the spherical_ particle \yhere t,.¢.2,) are the coordinates of the point &h,.
depends on the contact angle, This dependence is com-  The two bulk phases on both sides of the spherical in-
pared to that found in Saffman’s theory for a disc. The re+erface are assumed to be viscous and incompressible. Rey-
sults for the translational drag force are complemented byyolds numbers in our problem are on the order of 40r
those for hydrodynamic torque acting on the particle, in theless, which allows us to safely ignore inertial terms. Conse-
limit cases of an inviscid curved interface and of a viscousguently the Stokes equations hold for the local fluid velocity
flat infinite one. Our main conclusions are summarized inand for the pressure distributibron both sides of the inter-
Sec. IV. face,

interface
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V'Vk:()! Vpk: nkV'VVka k:avﬁv (3)

where V is the spatial gradient. The subscriptrefers to
either a or B three-dimensional3D) fluid. v and p are the
velocity and pressure fields, respectively, anpdis a 3D
fluid dynamical viscosity.

We impose a no-slip boundary condition at the solid
particle surface , for both fluid phases,

Vk=V,, k=a,B. (4

We will consider a system where the particle motion
perturbs the interface surface only very weakly, i.e., we work
in the regime of small capillary number. In this situation the
capillary forces dominate over the dynamic pressure contri-
bution term and the spherical surface may be regarded as
unperturbed(see the Appendix for a more detailed discus-
sion). The balance of the tangential velocity components in
both phases ak; and the condition for no mass transfer x4
acrossy; lead to 0 contact line

Vi=u, k=a,B, (5)

whereu is the velocity of the two-dimensional continuous
phase. Equation(5) represents the so-called kinematic
boundary condition. The tangential stresses at the interface,
3.;, balance the pressure jump across the interface from one ) ,
bulk phase to another. This results in the dynamic boundary -0 0o) W
condition'® (b)

P —n.. _ ) FIG. 2. (a) Toroidal mapping in they(,z) plane;(b) numerical domain in
X Xn;.
(Vs Pi)Xni=ny- (P =Pg) Xy ©) toroidal coordinates.

Zi
Zp.p
particle phase B

V, is the surface gradient operat®,is the two-dimensional
(2D) stress tensor &;, n; is the unit normal to the interface
oriented toward the continuous pha&esee Fig. 1a), andP,

and P are the bulk stress tensors in the enclosed and the ,
external phases, respectively. For Newtonian fluids the latter ' or
are defined ds

Pe=—pPul + i Vv + (V) ], k=a,B, (7)

wherel is the three-dimensional idemfactor and the super
script “T” denotes transposition. To define the interfacial

(9Vk’r_0 (9Vk’¢_

0, ».=0, k=a,B. 9

B. Toroidal coordinates

We consider ap=constant plane and define newy (x,)
‘coordinates through

stress tensoP; introduced in Eq.(6), we adopt a simple X=Tr(X1,X2)C0S¢, Y=T(X1,X2)SINp, Z=2(X1,X3),
linear Boussinesq—Scriven constitutive &8 (10)
Pi= 0l (7' = 9 (15:Dg)l s+ 275Ds, (8a)  With
2 ;
Ds:%[(Vsu)'ls“‘ls'(vsu)T]- (8b) r= b(l Xz) 2bX2 SinXy (11)

= z= .
. . . 1+ 2X, COSX, + X5’ 1+ 2X, COSX{ + X5
In Egs.(8a) and(8b), I, is the 2D idemfactor an®; is the 2 172 2 12

interfacial rate-of-strain tensor. The physical parameter$utting x;=constant orx,=constant defines two sets of
characterizing the surfacg are the thermodynamical inter- circles,

facial tensiono, and the intrinsic shear and dilational mem- 2

brane viscositiesyS" and 73", respectively. Both viscosities r2+(z+b cotx,)?=——o—, (129
are assumed constant. Note that surface viscosities have the i Xy

dimension of a volume viscosity multiplied by a length. Here 1+x3\2 4b2x3

we follow the notation chosen, for instance, by Edwards (r—sz +22=1ﬁ—2. (12b
et al® In Saffman’s and related theoriés'®the membrane X2 (1=x3)

shear viscosity is denoteg,,h whereh is the membrane This mapping of the (,z) plane is illustrated in Fig. (&).
thickness. With this notation, the membrane propefiy;., Whenb+#0 this representation maps the infinitgZ) plane
obviously has the dimension of a 3D fluid viscosity. into a finite rectangular domain in th&,(,x,) spacdsee Fig.
Due to the symmetry of the system under consideration2(b)]: — é<x;<z— § and— 1<x,=<0. The left boundary of
the velocity field satisfies the following condition along the the domainx,;= — &, is the portion of the particle surface in
r=0 axis: contact with theg phase, while the right one; = 7— 4, is
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the portion in contact with the phase. The interfac&,;, is Substituting Eq.(17) in the equation of continuity,
simply represented by, = . The upper boundaryk,=0, is  V-v,=0, transforms the latter into a second-order partial dif-
the three-phase contact line=b, z=0), and the lower ferential equation for the>-component of the velocity,
boundary,x,=—1, is the Oz axis. Note that infinity

0, z+x) reduces to a single pointd,—1) in the ¢ [fhi @ L m |+ | AL S )| Lk
(X4,X,) domain. The expressions for the metric coefficients axl h2 IXq kb 8x2 hy %, k¢ h.h,
h, and h,, can be derived from the relation between the ) 5
coordinates, see E@11), o 9 [TWa| 9 [T7Wio _
%, | Ty 2 x| T, | k=a,B. (19

h1: (1+2X2 COSX1+X2) h2:_X2h1. (13)

Eliminating the pressure from the Stokes equati@®)s
provides an extensive expression of the vorticity vector for
both phasesVXVXxw,=0, (k=«,8), giving a set of
second-order partial differential equations for the vorticity

Solving the system of Eqs3) coupled with the set of components,
boundary conditiong4)—(6),(9) is very difficult. Obstacles
specific to the structure of the equatiofproblems essen- hy 9
tially arise from the second-order derivatives in Eg).] are rZ axl

2bx,

C. Two-vorticity-one-velocity formalism

d [IWyy h, o
+__
' 1h2ax1( h, ” r ax,

discussed elsewhetg;* J

We now proceed to setting out the equations in a nu- rhlhz—(w—k'l”— W_kzl
merically tractable form. Our first step is to retain only the X2\ hy r
first-order Fourier mode of the velocity field as a function of ghy oW, dh, hihy or\ ow,
2 2%, oxg ( o T W) 7%
Vi =[ vk 1(X1,X2)SIN @] vy o X1,X2)SIN @] vy 4(X1,X2)COSAP], h, 4 g

rhihy—| —

k=a,B. (14) [ A Zaxz(m”
The second index to the velocity refers to components along he 9 [rhydha| K= a.p: (193
thex,; andx, coordinates, and along the perpendicular to the r ox,\ hy dxq k2> T

(x1,X,) plane. Basically, this mode is filtered out as a con-
sequence of the symmetry of the system geometry and of thé, ¢
boundary conditions for the flow field inx(,x;) coordi-  r ax,
nates. A similar approach was applied prior to this work in
related problems; see, for instance, the papers by Goltfman
and O’Neil?3

We now introduce the vorticity vectow, as

d [ W2 h, o
2%, | h, 2 0%,

d (W2 Wy 2
. ““a—(h—” i

dhy w1 ( ohy  hihy, ar ) Wy 1

w=3VXv,, k=a,B. (15 Lax, X, Zax, T 0%y 0%y
Likewise, we retain only the first Fourier mode wf h, o a [r
—{— —|rhjh,—| —
IXo X1\ hy
W= [W 1(X1,X2) COS¢h; Wy 5(X1,X2)COSh;
. +h1 d (rhy ghy e 19h
Wy 4(X1,X2)sing],  k=a,p. (16) T axg |\ Ty axg) | Wi =a,p. (19b
. It is eclluwalent to formulgte the hy(fj\;lodynamlc problem We now reformulate the boundary conditions in
|_Phtermsp ’;kvl' Vké’ Yk, orbm ;erms OWy.1, W2, Vﬁ"i" ‘(:\ 1,X2,¢) coordinates. At the infinity pointx;=0, X,
e equivalence between both presentations is the cons —1 the fluid is at rest, i.e.,

guence of the following property:
VB’¢,:0, Wﬁ,l: O, W,B,ZI 0. (20)

As we explained in Sec. Il A, contact line pinning for-
bids rolling motion, from which Eq(2) results. In &;,X,)

. _ space, this leads to specific conditions along the left, right,
Vk2= h2(7_x2(r Vi) T 2MWi1,  k=a,f. (17 and top boundaries of the rectangular donfaize Fig. 2b)].

For the particle surface; = — 6 andx;=m7— &, we obtain
The second representation, known as the “two-vorticity-one-

velocity” formalism'>~*' has the advantage of leading to a  vx 4=V+w(z,—d), k=a,B, (219
set of differential equations whose derivatives are taken only
along x; andx,. These two-variable equations are set out
below.

Jd
Vg 1= hl&_xl(r Vi ) T 2rWy 2,

-
©

. k=a,B, (21b

Wk’]_: *Tw

o |
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k=a,B. (219
In Egs.(21), the sign “+” refers to the part of the particle
surface in contact with phage In this case, the derivative in
Eq. (210 is taken atx;=7— 8. The sign “—" refers to the

Viscous drag of a solid sphere . . . 2715

basic ideas of the ADI metho@ee, e.g., Ref. 24The latter
was already employédfor solving the problem of the mo-
tion of a particle in a thin liquid film. The approach implies
introducing an artificial time variable followed by a time
iteration procedurésee Ref. 19 for detailsEach step pro-
vides an intermediate set of numerical values for the pressure

B part,x;=— . The trace of the contact line which was a and velocity fields. The time iteration is repeated until sta-
couple of points in they(,z) representation, transforms into a tionarity is reached.

line (x,=0) in toroidal coordinates. Along this line, the

above condition gives

re=V—owd, k=a,B, (229

Wy 2 SIN(X1+ 6) =Wy 1 COg X+ 0) =wsind, k=a,pB,
(22b

4 LMo s, k= 22

Wk,l 6 &XZ - wSInle _aaﬁ' ( C)

At the axis of revolution X,=—1), Eq.(9) yields
(9Vk‘¢_ . aWk,Z_ _
%, =0, wy;=0, %, =0, k=a,B. (23

The no-mass-transfer condition, E®), at the interfacex;
=, transforms into

Vkp=Ug, Wg1=Wjy,

IV dlnr

h +h
Yoxg, 1t axg

U¢+2Wk’2:0, k= CY,B, (24)

To compute the drag forcé&;, and torqueM, acting on
the particle, we use the following relationsHi?

sz Pa-np,ad2+f Pﬁ-npyﬁd2+f P,-n.dL,
s Sp Le

p.a p
(263
M =aJ Np,a X Pg- np,ad2+aJ’ Np.s
*pa S
><P5~npvﬁd2+af n.X P;-n.dL, (26b)
LC

wheren,, , andn, z are the unit vectors normal to surfaces
2,0 @and, 5, correspondinglyL . is the three-phase con-
tact line andn, is the unit vector perpendicular to it. The first
two terms on the right-hand side of E@6) account for the
friction experienced by the particle from the bulk phases,
while the last term brings in the additional hydrodynamical
resistance from the interfacg . F is proportional toV and
because of the symmetry of the problem the toriyiehas

wherew; ; is the x,-component of the vorticity at the inter- only anx-component i.e.My,=0 andM,=0. The computed
face. After some tedious calculations to reformulate the tanquantities are the particle drag coefficiefatand the particle
gential components of the dynamic boundary condition at théorque coefficientm, defined by

interface,;, Eqgs.(6)—(8), we obtain for the interface ve-
locity,

1 v av, dinr
Bl¢_ !¢_ ( — )u
xaho | 78 ox, T axy axg BT TN
2
i Sh)(9u¢ 1 dlnhy alnr i%
=(ns + 75 IX2 +|1+
X5 dlnx, dINXy /) X5 Xy
2 sirf x; oos 1 9Inr\2
—— Uyl + — u
b%hZ ¢ s\%, oxg | ¢
1 ow; 4 1 dlnr
_2 dl|_ I _4 Sh+ dil _ Wi 1, 25
s h, X, (775 + 7 )h2 X, i1 (253

and for the interfacial vorticity,

Xghl (e Xy e IXq dlnx, NpWp2~ NaWa,2
_ sh azwi,l dln h1+ alnr i W, 1
s | "ox2 alNX,  INXy)X, 9%y
4 2 sirf x, o5
_ _ Wb
(1_)(%)2 bzhg il

D. Numerical procedure

F=fV, (273

M=male,. (27b)

We compute reduced coefficienté=f/f,, where f,
=6mn,a is the Stokes drag coefficient in phaseand m
=m/my, where my=8mz,a is the Kirchoff's rotation
torque coefficient in phase. Input parameters of the com-
putation are: the viscosity ratiozz/ 7, , the shear and dila-
tional viscosity numbers,

dil
and K= s ,

Na Na

h
E= &

(28)

the size ratio,R/a, and the scaled penetration depth,
=d/a (for d=—1 the particle is completely immersed in the
enclosed phase and ford=1 in phaseB). The numerical
code is written inFORTRAN and usually run on a PC
Pentium-MMX computer. The program is made of four mod-
ules. The first module starts with a coarse periodic sampling
of the (X;,X,) domain and calculates the values of the
¢-component of the velocity and thve, andw, components

of the vorticity vector. The following modules work with
increasing sampling densities and provide increasingly accu-
rate velocity fields. The final module assures a precision of
about 0.02% for the calculated velocity valuglere is no

Equationg18) and(19) with the imposed boundary con- essential difficulty for increasing the precision by using more
ditions Egs.(20)—(25), are solved numerically applying the powerful machines However the drag and torque coeffi-
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FIG. 3. Velocity field in thex=0 plane(distances are scaled to particle radifar a spherical particle moving ig-direction with velocityV; 7,/75=1,
E=0,K=0, R/a=10. In(a) and(b) d=—0.5, in(c) and(d) d=0.5; (a) and(c) present the velocity distribution in a{,x,) lattice, the gray hemisphere
represents the particle, and the dotted line denotes the interface position.=Tbenst and,= const circles can be recognized as the loci of the velocity field
vectors’ origins(b) and(d): Same numerical data in Cartesian lattice, the solid line denotes the interface position. The broken curve represents the contact line

(in perspective, artificially

cients are computed with lower precision1%) because of (Oy,02z) profile of the velocity field in thex=0 plane for
the integrations in Eq26). The computing time depends on two different penetration depths of the particle. Figufa) 3
the values of the input parameters and on the required nwshows the result for aonviscous interfacéE=K=0) and

merical accuracy. For typical inputs such ag/7z=1, E
=2,K=0, R/la=5, andd=0, it takes abou2 h to compute
f andm with the highest precision. Bringind close to+1

for similar « and B phases ,/7z=1). In Figs. 3a) and
3(b) the particle strongly penetrates into the VDB interior

(d=—0.5) while in Figs. 8) and 3d) the penetration is

demands increasing the,(,x,) sampling density and makes weak (d=0.5). The size ratioR/a, is everywhere=10. The
computation several times longer. Wher + 1, the set of particle is presented in gray and the dotted curve is the
circles corresponding t®,=const[see Eq.12b)] collapses spherical interfacey,; . Because of the symmetry in the ve-
to the origin ¢ =0, z=0), i.e., to the particle-VDB contact locity field, v(x,y,z)= —v(X,—V,2), it is sufficient to show
point. Because of this limitation, the numerical procedure isonly they>0 side. In Figs. &) and 3c) the representation
inapplicable to the case of a particle tangent to the interfacecorresponds to a periodic sampling of the (x,) domain,
The numerical results presented in the following sectiorwhile in Figs. 3b) and 3d) a standard grid in they(z) plane
were obtained by running the program on a PC-Pentium lis used. Note thatx; ,x,) sampling ensures a high mapping
computer. The maximum computation time was limited todensity of the region close to the particle surface, and thus
about 50 h, which imposed a limitation of the particle posi-optimizes the accuracy in the velocity field entering E6).
tion to |d|=0.9. This corresponds to a contact angesee The range of the perturbation caused by the particle mo-
Fig. 1(b)] between 25 and 155°. tion is readily seen in Figs.(B) and 3d). At large distances
in the continuous phasg, the velocity drops down to zero
(undisturbed fluigl The influence of the solid particle is not
very far reaching. At distances of six times the particle ra-
dius, the velocity in they-direction is less than 0\2

To visualize the events occurring as a consequence ofihereas in thez-direction the velocity profile is quickly
the particle motion along the interface, we calculated thedamped down to the same value already at distances less

IIl. NUMERICAL RESULTS AND DISCUSSION

A. Inviscid spherical interface: Recirculation effect
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z‘si E=0K=0 size of the particle, the finite volume effect becomes dis-

R/a - ratio: tinctly pronounced. The behavior df is as expected: the
deeper the particle penetration, the larger the friction ratio.
Even at weak penetratiord € 0.9), where a very small por-
tion of the particlglabout 8% forR/a=10) is in the enclosed
phasex, we observe a noticeable increasd ifmThe behavior

of the dimensionless torque coefficientis illustrated in Fig.
4(b). All other parameters are the same as in Fig).4For
large size ratiosR/a, the torque coefficient is symmetric
with respect to the particle penetration depth. When the
membrane is flat R/a>1), the particle performs a pure
translational motion. Whed>0 (see Fig. 1, the hydrody-
namic torque tends to make the particle rotate counterclock-
wise. We find the same sense for the torque as that found by
Lee and Led’ for a particle close to but not in contact with

a plane interfaced>1). Following Lee and Led’ we de-
fine the torque as positive in this case.

Of course, the particle rotation is forbidden by the
contact-line-pinning condition, as we explained in Sec. Il A.
In other words, the hydrodynamic torque is counteracted by
a mechanical torque from the membrane at the level of the
contact line. When the size ratio decreases, the particle per-
forms a rotational motion as well, whose angular velocity is
given by Eq.(1). Because of this rotation, the flow velocity
around the upper part of the particle is larger than around the
bottom part(see the flow fields in Fig.)3 This has the con-
sequence of making the torque more positive, whatever the
particle’s penetration. WheR/a<5, the torque becomes
positive for all penetrations. For intermediate size ratios, e.g.,

(b) d R/a=10, the torque is negative only wheh<—0.4, i.e.,
FIG. 4. Size ratio effect for a nonviscous interfag@(0, K=0). Dimen-  When the particle is largely inside the VOJBor instance, as
sionless drag coeﬁcieﬁ(a) and torque coefficiert (b), as a function of  IN Fig. 3@]. o
penetration depthd, for different size ratiosR/a (see the inset 7, /7, Note that|m| is everywhere moderate<0.35, which
=1 means that the computed values of the torque are definitely
less than 3rpa?V in absolute value. As discussed in the
Appendix, such torques cannot definitely distort the VDB
shape in usual experimental conditions with lipid vesicles.

-1.0 -0.5 0.0 0.5 1.0

than a particle diameter, see FiggbB3and 3d). When
choosing zero interface viscosity numbémsnviscous inter-
face we want to emp_hasize the effect of just the finite size ofg 4t infinite interface: Comparison with Saffman’s
the VDB. The spherical shell.;, plays the role of a wall s problem
blocking the flow lines which are forced to follow its con- o ] )
tour. The flow ina phase is looped inside the finite volume ~ WhenR/a—, finite-size effects obviously disappear.
encompassed by the interface. This is an example of “recirAnalyzing the problem for a flat interface simply amounts to
culation,” similar to that encountered in the problem of the choosing#=0 [see Fig. 1a)]. We calculated the drag and
motion of a particle in a closed béR.This recirculation is ~ forque coefficients for three different values of the surface
most pronounced when the particle is more deeply immerse¥iScosity, again supposing,= 7. The data are presented
in the enclosed phasd=—0.5[see Fig. &)]. The less the in Fig. 5. Each of the curves is symmetrical abalit0
particle portion in phase, the weaker the perturbatidne- ~ because of the symmetry of the system about the interface
circulation. 3. In the case of an inviscid interfac& &0, K=0), the
Figure 4 shows the incidence of the flow confinement orenly_factor influencing the friction is the particle position,
the value of the particle drag and torque. In Figa)4the i.e., d. The base curve for the drag coefficient in Figa)5
dimensionless friction coefficient, is plotted as a function (dotted ling has its minimum atl=0 when the sphere equa-
of the scaled penetration depth, for systems with different tor is located in the interface plane. In this situation, the
size ratiosR/a. Again the surface viscosity is chosen to be streamlines are identical to those for the same particle in the
zero E=0, K=0). The lower limit forf is just 1 f=f,).  bulk fluid; thenf=f,=6mna, the sphere Stokes friction.
This limit is approached for large size ratifR/a~50 in ~ When d#0, the interface perturbs the streamlines of the
Fig. 4@] when the particle feels the interface as flat andStokes flow and this results in increasing the friction. This
infinite. When the VDB size is decreased to ten times thesxplains why the bottom curve in Fig(& is concave. Con-
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less thanmg, the Kirchoff's value corresponding to an an-

1.8 E=5 gular velocity equal to//a. The 3D fluids on both sides of
the membrane are supposed identical, as bef@wults for
water/air interface are given in Ref. )11

1.6 The curve corresponding =0 is the same as that in

1 Fig. 4b) in the infiniteR/a limit. Whend>0, the flow wants

f | —mmm——— E=1"""--~ to make the particle rotate counterclockwise, iB.is posi-
tive. When the membrane viscosity increases, so does the
1.1 friction on the side of the particle in contact with the mem-
- . brane. Thend>0 andE very large the interfacial friction
P D B0~ tends to make the particle rotate clockwise.Bfis large

enough, the torque becomes negative. The influence of the
interfacial friction has a maximum at some finite penetration
_ depth,d (about+0.7 for E=5). Beyondd, |m| decreases

(@) d because the size of the contact line rapidly decreases.

It is interesting to compare the friction of the spherical

-1.0 -0.5 0.0 0.5 1.0

0.2 particle to that of a disc with the same contact line. Thus we
come back to Saffman’s problem, for a disc of radiuand
same thickness as that of the membrane. Saffman’s equation

0.1 for the disc friction coefficient reads

4
i 0.0 fdiSC: thl—y (29)
|n(5 -y
0.1 where | is a characteristic lengthy is Euler's constant
(=0.5772.). In the standard situation of an infinite mem-
brane inside a continuous phase of bulk viscosity |
0.2 =727 (we recall that the shear surface viscosity has the
-1.0 -0.5 0.0 0.5 1.0 dimension of a bulk viscositylength. Equation (29) is
(b) - valid whenb/1<1 (there is no such restriction in the gener-

alized theory of Hugheet al®). The important and some-
FIG. 5. Reduced frictiorfa) and torque(b) of a spherical particle across a what counterintuitive idea conveyed by HR9) is that the
flat inFerfaceK=O andz,/nz=1.The dqtteq line corresponds to a nonvis- disc friction depends 0n|y marginally on its size. Becahse
cous interfaceE=0; the broken and solid lines 6=1 andE=5, respec- . . .
tively. intervenes only through a logarithrfys. remains on the or-
der of 2", whateverb. Our analysis for low viscosity num-
bers, see Fig. (@ (E<?2), also demonstrates a very weak
versely, when the interface is very viscols<5, solid ling,  dependency of the spherical particle drag coefficient on the
the curve becomes convex. Here the drag coefficient iparticle penetration, or equivalently, on the radius of the
mainly influenced by the interface friction rather than bydisc, b, that the particle intercepts in the membrane. This
hydrodynamic perturbations in bulk phases. The drag coeffianalogy with Saffman’s disc problem suggests that the
cient arrives at a maximum whet=0. In that position the spherical particle excess friction follows an equation similar
intersection area of the particle with the viscous surface i$0 EQ.(29),
the largest b=a), which leads to a greater resistance. In |
general, the sphere drag coefficient may be decomposed as f,, = nghg(5>, (30)
f="fo+ fexe, Wherefg,.is an excess friction. The decompo-
sition gets a simple physical significance when the interfacguhereg is a slowly varying function; Eq(29) is equivalent
viscosity is large E>1). In this limit, f,. essentially rep-  (for =5, ,= 7p) 10
resents the friction which the interface opposes to the motion
of the contact line, in other words of the digaf radiusb)
which the particle intercepts in the interface plane. Wken
~1, feocis influenced by both the streamlines’ perturbation
in bulk phases and by the plane disc friction. Because of thg‘/
competition between these two mechanisms,fift§ curve
evolves from concave to convex whed| increaseqFig.
5(a), E=1]. Results for the hydrodynamic torque acting on
the particle are shown in Fig(h. Because the membrane is
supposed flat, all curves are odddn Note that|m|<0.35
whenE<5, which again means that the torque is definitely — g(x)~2.9% %11® (9=90°,1=x=<100). (32

fex=f—1= £ —E 31

e T 6r o\ sing) (3Y)
Fig. 6 the reduced excess frictig@C/ E is plotted versus
siné. The broken line was computed for a constant angle
#=90° (d=0) and I<E=<100. The gray zone marks the
numerical error band for the computed data. We do find a
slowly varying function, which can be approximated by a
power low (solid line) with a very weak exponent,
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FIG. 6. Scaled excess frictioh,./E versusE/sin @ for a flat infinite mem- ~ FIG. 7. Dimensionless drag coefficierft, as a function of penetration
brane. See text and figure insert for definition of symbols. The gray bandiepth,d, for different size ratiosR/a, and shear surface viscosity numbers;

represents the estimated uncertainty of the computed valugs6E. As ~ K=0, 7,/7,=1. The dotted curve correspondsie-0 (the numerical data
the relative uncertainty of is about constant, that 6f,./E diverges when ~ 8¢ the same as in Fig. 4, see legerTthe three upper curves present results

f—1, i.e., whenE—0. for E=2.

This power low fits to the computed values within numericalinterface. A numerical exact solution to this problem was
error. Equationg30)—(32) show thatf ,,~2.955" for a=| worked out by Lee and L&l for a nonviscous mterfape;
and only decreases down to 4% for a=0.01. Note that ~recently the same problztgm was generalized to a flat viscous
Eq. (32) only holds for=90° (d=0). We thus find that the interface .by anO\et al~” The sphere tan_ge_nt_ to the inter-
excess friction of a macroscopic spherical particle whosdace configuration corresponds to te-1 limit in Lee and
center lies in the membrane plaf®=90°) behaves similarly ~Leal's notation. Their result foh=7,/7z=1 is f(d=1)

to the disc friction in Saffman’s theory. Nevertheless note=1.051,which is in agreement with ours. We checked that
that the similarity is only qualitativeEgs. (28) and(32) are  this agreement remained true with viscous filnEs<(2) us-
quantitatively differerl; which means that Saffman’s equa- ing data from Danoet al*®

tion, Eq.(29), cannot be used to interpret data with macro-

scopic spherical particl€d.In their most general formwith ~ C. General situation: Spherical viscous interface

variable 6), Egs.(30) and (31) suggest that the dependence  Having discussed the limit situations of a finite-size in-
of fexc ON b Might be universal, i.e., independent of the con-yjsciq interface and that of flat infinite viscous interface, we
tact angle. If it were so, increasing the particle size whilengy come to the general problem of a spherical viscous in-
increasing/d| so as to keefp=a sin §=constant should not  terface. Making the interface viscous obviously increases the
significantly modify fe,c. For instance, a small sphera,  particle friction. For a large number of systems to which the
=1pum, 6=90° and a large on@=3 um, 6=20°, should  roplem relates, the dilational and the shear surface viscosi-
have the same friction. We tested this conjectureBer2 ties are of the same order of magnitude. It is quite common
andE=5 and found that it was valid within the error band 51 they differ by a factor of 0.2 up to 5. Conversely, for
only for angles not too far from 90°, say 45%=<135°. For biological membranes;d” and nzh differ by several(4—5)

. . S
small (or large, symmetrically contact angles, the particle qrgers of magnitudd® Since this work is mainly dedicated to

friction is inferior to that for#=90°, at constanb. In fact,  |inig membraned?3! we will put K=0. Figure 7 presents
this difference is not surprising; coming back to the above,,merical data for four systems with different parameters
given example, it is clear that the velocity fields correspondyngicated in the legend. For the three upper curves the sur-
ing to the small and large spheres are necessarily differeqkce shear viscosity numberfs=2 andR/a varies between
and so are the particle frictions. Nevertheless, this differencg ang 10. To facilitate the comparison, the base curve pre-
becomes negligibly small whej|<0.7. sents numerical result€E 0, R/a=5) already displayed in

As we discussed before, our procedure does not allow UBig. 4a). The main feature in Fig. 7 is the upward shift of
to compute the particle drag coefficient in e =1 limit,  the friction values(for R/a=5) in the whole interval of.
i.e., when the particle is tangent to the interface. Neverthethe effect is noticeable even for penetrations corresponding
less, when the viscosity is not too largéd=*1) can be 5 4=0.9 ord= —0.9 when the size of the disb, which the
found by extrapolating thé(d) curve. For instance, we find particle intercepts in the interface isa. However, the vis-
f(d==1)=1.05 for a nonviscous interfac& & 0) between cosity influence folE=2 does not overpower the finite-size
two fluids of equal viscositiesf,= 74). Interestingly, the  contribution and as a whole the curves preserve their nega-
d= =1 configuration can be found as a limit situation too, intive slope tendency. An interesting point to note is that all
the case of a sphere near to, but not in contact with a flathree upper curves converge to one and the same value for
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Ria . y 7
FIG. 8. Friction coefficient scaled to Stokes resistance for pitase=0, <] : : : : : ' .
d=0. The two upper curves present results for high shear surface viscosity -4 -3 -2 -1 0 1 2 3 4
(E=30 andE=1000) and a viscosity ratio, /75=1. The dotted line, y
curve (@), corresponds to a nonviscous surfage; 0 and», / 75=1, while
the solid line, curveb), is calculated foE=0 andy,/7=1.5. FIG. 9. Velocity field for a particle on a very viscous interfade<30).

Input parameters arg, /n;=1, K=0, R/a=3, d=0. The velocity field is
shown in toroidal coordinates lattice presentation. The dotted line shows the

. — . . position of the spherical interface.
small penetrationsd=0.9), in contrast to the behavior ob-

served with the inviscid membran&=0 [see Fig. 4a)].
Obviously, in this region the interface viscosity dominates The slightly positive slope of the third curve& & 30) in
the flow confinement effect.

) h its for hiah sh . i Fig. 8 indicates that both recirculation and overall rotation
Figure 8 shows results for high shear viscosity numbers, o oherative in this case. We expect rigid rotation to be the

The friction coefficient is plotted as a function of the size leading mechanism for smaR/a; conversely, wherR is

ratio, R/a, of the VBD-particle complex. Here we consider oy |arge  rotating the VDB as a whole costs too much in
the general situation where and g may be different, and o5 of dissipation and it is preferable for the particle to
plot (74/7)f. In other words the friction coefficient pre- shear the interface. Ultimately, whéi—o, we are back to
sented in the figure is scaled by the Stokes friction not inne situation of an infinite interface, with obviously no over-
phasea as in the previous figures, but in pha8eOnly for 4| motion. Size ratios in Fig. 8 (2R/a<5) are intermedi-
curve b, solid line, the viscosity ratio is different from 1: 546 petween th&® —0 andR—s regimes. For illustration,
7,/ m=1.5. For all curved is set=0. The novel effect in  the flow field corresponding t&=30, R/a=3, 7,= 7, is

the figure is the growth of the friction for large (two upper  shown in Fig. 9, in toroidal coordinates representation. The
curves when the size ratio increases. We recall that for smalkxistence of a partial overall rotation of the system is evident
values of the shear viscosit{E & 2), f is a decreasing func- from the slow decrease of the velocity along the interface;
tion of R/a (see Fig. 7. Figure 8 demonstrates an opposite compare with Figs. @) and 3b). However, note that the
behavior whenE is very large. The interpretation of this flow pattern inside the VDB is not cylindricdthe vortex is
apparently paradoxical result lies in the possibility of thenot located at about mid-distance between the particle and
VDB-particle complex to rotate as a whole iphase. Inthe  the VDB center and follows the particle motiprwhich
limit of an infinite membrane viscosity, the VDB-particle means that part of the dissipation takes place in the VDB
complex may be viewed as a rigid body. The friction in- interior.

volved in the particle motion is then the rotational friction of

the whole complex in8 phase. Obviously, this friction in-

creases wheR increases. The upper limit df for d——1 IV. CONCLUSIONS

may be estimated from the Kirchoff equgﬁaﬁzfor a rotat- The theoretical study presented in this work was aimed
ing sphere; both upper curves on the figure are below thal assessing the friction coefficient for systems where the
limit. We find:** f —4R/3a when ns—. The overall rotat-  curvature of the interface influences the resistance experi-
ing effect acts oppositely to the above described recirculatiognced by the floating particle. The model refers to slow mo-
effect. The influence of the latter is obviously more pro-tion in the Stokes’ regime and small capillary numbers and is
nounced for “less rigid”(less viscoussurfaces. The dotted gapplicable both to curved and flat interfaces. The approach
line, curve aE=0, 7,/7z=1, represents the extreme caseaccounts for the viscous properties of the surface.

of an inviscid interface for identicak and g phases. The A toroidal coordinate system was introduced allowing
lower limit of the curve at infinity is set by the net Stokes’ decoupling of the coordinate variables. The hydrodynamic
resistance {=1). Curve b, solid line §,/75=15, E  equations and boundary conditions were transformed follow-
=0), shows that increasing, results in increasindg, but ing the two-vorticity-one-velocity formalism, which allowed
the general tendency of the curve is preserved as a whole.us to eliminate thep-coordinate, thus reducing the problem
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to a two-variable one. The numerical solution was achieved:1. As we explain in Sec. Il B, the mapping of the,Z)
employing the ADI method with a second-order precision. plane by toroidal coordinates fails in tlie— +1 limit. For
The performed analysis on the influence of different fac-this reason, the accuracy of the numerical procedure consid-
tors demonstrated a considerable contribution to the frictioerably decreases when the size of the contact line becomes
coefficient both from the finite size of the enclosed fluid andsmall compared ta. Keeping the computing time within
from the surface shear viscosity. An interesting prediction ofreasonable limit=50 h), the friction coefficient can be
the numerical calculations is the possible rotation of thecomputed within about-1% only whenb>0.1a. In such
particle/interface complex as a whole when surface viscositgonditions,Ca is not considerably larger thanV/o, and,
is increased, i.e., when the particle is blocked on the sphereonsequently, the above estimate for the validity of the
cal shell. theory remains in force. In other words, there is no risk that
Finally, the theory makes feasible the interpretation ofa computed value of the particle drag coefficient be physi-
experiments based on the “falling ball viscosimetry” cally wrong because the interface shape could be distorted by
method independently of the size ratio of the vesicle/particlehe particle motion.
complex3! Moreover, the approach is applicable to systems
where the fluids on both sides of the interface are of different

viscosities. This happens in emulsions stabilized by solidiy ¢ tambe and M. M. Sharma,

particles(so-called Pickering emulsions
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