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Viscous drag of a solid sphere straddling a spherical or flat surface
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The aim of this paper is to compute the friction felt by a solid particle, of radiusa, located across
a flat or spherical interface of radiusR, and moving parallel to the interface. This spherical interface
can be a molecular film around an emulsion or aerosol droplet, the membrane of a vesicle or the
soap film of a foam bubble. For simplicity, the acronym VDB is used to refer to either vesicle, drop,
or bubble. The theory is designed as a tool to interpret surface viscosimetry experiments involving
spherical probes attached to films or model membranes, taking care of the finite-size effects when
the film encompasses a finite fluid volume. The surface of the VDB is a two-dimensional fluid,
characterized by dilational (hs

dil) and shear (hs
sh) surface viscosities. The particle intercepts a

circular disc in the interface, whose size depends on the particle penetration inside the VDB. The
three-dimensional fluids inside and outside the interface may be different. The analysis holds in the
low Reynolds number and low capillary number regime. A toroidal (x1 ,x2 ,f) coordinate system is
introduced, which considerably simplifies the geometry of the problem. Then the hydrodynamic
equations and boundary conditions are written inx1 ,x2 ,f. The solution is searched for the
first-order Fourier component of the velocity field in the radial anglef. Reformulating the equations
in ‘‘two-vorticity-one-velocity’’ representation, one basically ends up with a set of equations in
x1 ,x2 only. This set is numerically solved by means of the Alternating-Direction-Implicit method.
Numerical results show that the particle friction is influenced both by the viscosity and by the
finiteness of the VDB volume. Finite-size effects have two origins: a recirculation effect whena/R
is not very small, and an overall rotation of the VDB-particle complex whenhs is very large. In
principle, the theory allows for a quantitative determination ofhs whatevera/R, including the limit
a/R50 ~flat interface!. © 2000 American Institute of Physics.@S1070-6631~00!01210-1#
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I. INTRODUCTION

The problem of the motion of a solid particle along
interface separating two fluid phases has implications
technological and biological problems: for instance, em
sions can be stabilized by solid particles at the oil/water
terface~Pickering emulsions1!; the mobility of macroscopic
inclusions or of organelles in contact with or across c
membranes also relates to the hydrodynamic problem
cussed hereafter. A theory on the motion of a disc alon
viscous interface/membrane was set up by Saffman2,3 and
later developed by Hugheset al.4 In their approach the disc
has the same thickness as the membrane, which is mod
as a two-dimensional viscous fluid. The Saffman–Hug
theory was successfully used to interpret experiments
Brownian motion of disc-like domains in a layer of flui
lipid,5 and of proteins in membranes.6,7 The disc problem
was the matter of subsequent refinements, to include the
fect of a wall parallel to the membrane~see the recent com
plete theory by Stone and Ajdari8 and references therein!.

The disc theory is not directly applicable to experime
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with macroscopic three-dimensional probes, for instan
spherical micron-sized particles on surfactant monolayers9,10

at the water/air interface. This kind of system was theor
cally addressed by Danovet al.11 Their approach took into
account both the interfacial viscous properties and the hyd
dynamic contribution of the part of the floating particle pr
truding in the water subphase. However, this approach
valid only for the air/liquid interface and a limited interval o
three-phase contact angles at the particle surface. Da
et al.’s theory was worked out for particles which were pr
dominantly immersed in the water phase, i.e., the con
angle u ~defined in the liquid phase!, had to be less than
about 100°. Recently, experiments12 were carried out with
latex microspheres attached to lipid membranes. In this s
ation, both sides of the film are made of a viscous fluid, a
then both sides of the particle contribute to the friction. T
interpretation of the experimental results in Ref. 12 w
based on regarding the studied system as a superpositio
two ‘‘air/water’’ systems with complementary conta
angles, u and 180°2u. However, because of the abov
mentioned restriction, the superposition approach is inap
cable for spheres with contact angles far from 90°. Mo
over, Danovet al.’s theory11 was elaborated only for flat an
infinite interfaces. As the particle in the experiments in R
il:
1 © 2000 American Institute of Physics
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2712 Phys. Fluids, Vol. 12, No. 11, November 2000 Danov, Dimova, and Pouligny
12 is moving along a closed spherical membrane, i.e
vesicle, the theoretical approach needs to account for
contribution of the finite water volume encompassed ins
the vesicle.

Addressing this general problem is the purpose of t
paper. Our goal is to compute the friction felt by a spheri
solid particle straddling the interface of a spherical vesic
droplet, or bubble~VDB! or flat interface. The interface i
supposed to be a two-dimensional viscous fluid, charac
ized by dilation and shear surface viscosities.

In the following section, we start with the basic hydr
dynamic equations and boundary conditions of the probl
We then introduce a toroidal coordinate system, (x1 ,x2 ,f),
whose axis contains the particle and the VDB centers.f is
the polar angle around this axis@see Fig. 1~b!#. Hydrody-
namic equations are written inx1 ,x2 ,f variables and the
solution is searched for the first-order Fourier componen
f of the velocity and pressure fields. Reformulating t
problem in the two-vorticity-one-velocity formalism allow
us to transform the initial three-space-variable problem int
two-variable (x1 ,x2) one. The equations are solved nume
cally by means of the Alternating-Direction-Implicit~ADI !
method. Numerical results for the particle friction coefficie
are given and commented on in Sec. III. There we iden
the influences of the surface viscosity and of the finitenes
the VDB volume. As we will see, finite-size effects involv
both a recirculation flow inside the VDB and an overall r
tation of the VDB-particle complex when the interface
very viscous. A paragraph in Sec. III is dedicated to
limiting case of a flat infinite membrane. There we analy
the way in which the friction felt by the spherical partic
depends on the contact angle,u. This dependence is com
pared to that found in Saffman’s theory for a disc. The
sults for the translational drag force are complemented
those for hydrodynamic torque acting on the particle, in
limit cases of an inviscid curved interface and of a visco
flat infinite one. Our main conclusions are summarized
Sec. IV.

FIG. 1. ~a! The problem: a particle of radiusa across a spherical interface o
radiusR separating two fluid phases,a andb; ~b! detail of the VBD-particle
complex; see text for symbol definitions.
Downloaded 25 Nov 2005 to 141.14.234.15. Redistribution subject to AIP
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II. MATHEMATICAL FORMULATION OF THE
PROBLEM

A. Basic equations and boundary conditions

We consider the motion of a particle of radiusa on a
spherical viscous interface separating two fluid phases,
Fig. 1~a!. The inner and external phases are denoteda andb,
respectively. The interface is of finite radius,R, and meets
the particle surface along a circular contact line indicated
L. In Fig. 1, c is the half angle of the cone defined by th
VDB center andL ~the limit c50 corresponds to a flat inter
face and will be commented on later!. Sp andS i refer to the
particle surface and to the spherical interface correspo
ingly, while Cp andCi indicate their centers. We denote b
Oxyz a system of Cartesian coordinates, whose origin is
the center of the particle contact line@see Fig. 1~b!#. The
z-coordinate of the particle center isd5OCp. The particle
moves parallel to the membrane, i.e., in the (Oy,Oz) plane
with a translational velocityV5(0,V,0) directed along the
y-axis. We suppose thatthe contact line does not move rela
tively to the surface of the particle. This important assump
tion is suggested by the observations of Dietrichet al.13 on
polystyrene particles bound to lipid vesicles. These auth
noticed that the contact angle would remain constant w
the particle moved on the surface of the vesicle and that
membrane-particle contact line was ‘‘pinned’’13 to the par-
ticle solid surface. The assumption of contact line pinni
has the advantage of considerably simplifying the hydro
namics of the problem. In particular, this eliminates the d
ficulties related to moving contact lines, such as the div
gence of the shear rate or the multivaluedness of the fl
field at the contact line.14 In our description, the flow is ev-
erywhere single-valued and regular. Because of pinning
the contact line at the particle surface, rotations of the p
ticle aroundOx andOy are forbidden. Rotation aroundOz
is forbidden by symmetry. The particle movement then
duces to a simple solid rotation around the VDB center. T
corresponding angular velocity,v, is given by

v5
V tanc

b1d tanc
, ~1!

whereb5Aa22d2 is the radius of the particle contact line
b5OL @see Fig. 1~a!#. The components of the velocity,vp ,
of an arbitrary point on the particle surface,Sp , in the cy-
lindrical coordinate system,Orfz @see Fig. 1~b!#, are

np,r5@V1v~zp2d!#sinf,

np,f5@V1v~zp2d!#cosf, ~2!

np,z52vr p sinf,

where (r p ,f,zp) are the coordinates of the point onSp .
The two bulk phases on both sides of the spherical

terface are assumed to be viscous and incompressible.
nolds numbers in our problem are on the order of 1024 or
less, which allows us to safely ignore inertial terms. Con
quently the Stokes equations hold for the local fluid veloc
and for the pressure distribution15 on both sides of the inter
face,
 license or copyright, see http://pof.aip.org/pof/copyright.jsp



lid

on
or
he
tr

d
s
i

er

s
tic
ac
o
a

l
e

th
tt

e
ia

e
-
-

s
e
re

rd

io
e

f

n

2713Phys. Fluids, Vol. 12, No. 11, November 2000 Viscous drag of a solid sphere . . .
¹•vk50, ¹pk5hk¹•¹vk , k5a,b, ~3!

where ¹ is the spatial gradient. The subscriptk refers to
either a or b three-dimensional~3D! fluid. v and p are the
velocity and pressure fields, respectively, andhk is a 3D
fluid dynamical viscosity.

We impose a no-slip boundary condition at the so
particle surfaceSp for both fluid phases,

vk5vp , k5a,b. ~4!

We will consider a system where the particle moti
perturbs the interface surface only very weakly, i.e., we w
in the regime of small capillary number. In this situation t
capillary forces dominate over the dynamic pressure con
bution term and the spherical surface may be regarde
unperturbed~see the Appendix for a more detailed discu
sion!. The balance of the tangential velocity components
both phases atS i and the condition for no mass transf
acrossS i lead to

vk5u, k5a,b, ~5!

whereu is the velocity of the two-dimensional continuou
phase. Equation~5! represents the so-called kinema
boundary condition. The tangential stresses at the interf
S i , balance the pressure jump across the interface from
bulk phase to another. This results in the dynamic bound
condition16

~¹s•Pi !3ni5ni•~Pa2Pb!3ni . ~6!

¹s is the surface gradient operator,Pi is the two-dimensiona
~2D! stress tensor atS i , ni is the unit normal to the interfac
oriented toward the continuous phaseb, see Fig. 1~a!, andPa

and Pb are the bulk stress tensors in the enclosed and
external phases, respectively. For Newtonian fluids the la
are defined as15

Pk52pkI1hk@¹vk1~¹vk!
T#, k5a,b, ~7!

where I is the three-dimensional idemfactor and the sup
script ‘‘T’’ denotes transposition. To define the interfac
stress tensorPi introduced in Eq.~6!, we adopt a simple
linear Boussinesq–Scriven constitutive law,17,18

Pi5sI s1~hs
dil2hs

sh!~ I s :Ds!I s12hs
shDs , ~8a!

Ds5
1
2 @~¹su!•I s1I s•~¹su!T#. ~8b!

In Eqs.~8a! and ~8b!, I s is the 2D idemfactor andDs is the
interfacial rate-of-strain tensor. The physical paramet
characterizing the surfaceS i are the thermodynamical inter
facial tension,s, and the intrinsic shear and dilational mem
brane viscosities,hs

sh andhs
dil , respectively. Both viscositie

are assumed constant. Note that surface viscosities hav
dimension of a volume viscosity multiplied by a length. He
we follow the notation chosen, for instance, by Edwa
et al.16 In Saffman’s and related theories,2–4,8 the membrane
shear viscosity is denotedhmh where h is the membrane
thickness. With this notation, the membrane property,hm ,
obviously has the dimension of a 3D fluid viscosity.

Due to the symmetry of the system under considerat
the velocity field satisfies the following condition along th
r 50 axis:
Downloaded 25 Nov 2005 to 141.14.234.15. Redistribution subject to AIP
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]nk,r

]r
50,

]nk,f

]r
50, nk,z50, k5a,b. ~9!

B. Toroidal coordinates

We consider af5constant plane and define new (x1 ,x2)
coordinates through

x5r ~x1 ,x2!cosf, y5r ~x1 ,x2!sinf, z5z~x1 ,x2!,
(10)

with

r 5
b~12x2

2!

112x2 cosx11x2
2 , z5

2bx2 sinx1

112x2 cosx11x2
2 . ~11!

Putting x15constant orx25constant defines two sets o
circles,

r 21~z1b cotx1!25
b2

sin2 x1
, ~12a!

S r 2b
11x2

2

12x2
2D 2

1z25
4b2x2

2

~12x2
2!2 . ~12b!

This mapping of the (r ,z) plane is illustrated in Fig. 2~a!.
WhenbÞ0 this representation maps the infinite (r ,z) plane
into a finite rectangular domain in the (x1 ,x2) space@see Fig.
2~b!#: 2d<x1<p2d and21<x2<0. The left boundary of
the domain,x152d, is the portion of the particle surface i
contact with theb phase, while the right one,x15p2d, is

FIG. 2. ~a! Toroidal mapping in the (y,z) plane;~b! numerical domain in
toroidal coordinates.
 license or copyright, see http://pof.aip.org/pof/copyright.jsp
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2714 Phys. Fluids, Vol. 12, No. 11, November 2000 Danov, Dimova, and Pouligny
the portion in contact with thea phase. The interface,S i , is
simply represented byx15c. The upper boundary,x250, is
the three-phase contact line (r 5b, z50), and the lower
boundary,x2521, is the Oz axis. Note that infinity (r
→`, z→6`) reduces to a single point~0,21! in the
(x1 ,x2) domain. The expressions for the metric coefficien
h1 and h2 , can be derived from the relation between t
coordinates, see Eq.~11!,

h152
1

2bx2
~112x2 cosx11x2

2!, h252x2h1 . ~13!

C. Two-vorticity-one-velocity formalism

Solving the system of Eqs.~3! coupled with the set of
boundary conditions~4!–~6!,~9! is very difficult. Obstacles
specific to the structure of the equations@problems essen
tially arise from the second-order derivatives in Eq.~6!# are
discussed elsewhere.19–21

We now proceed to setting out the equations in a
merically tractable form. Our first step is to retain only t
first-order Fourier mode of the velocity field as a function
f,

vk5@nk,1~x1 ,x2!sinf;nk,2~x1 ,x2!sinf;nk,f~x1 ,x2!cosf#,

k5a,b. ~14!

The second index to the velocity refers to components al
thex1 andx2 coordinates, and along the perpendicular to
(x1 ,x2) plane. Basically, this mode is filtered out as a co
sequence of the symmetry of the system geometry and o
boundary conditions for the flow field in (x1 ,x2) coordi-
nates. A similar approach was applied prior to this work
related problems; see, for instance, the papers by Goldm22

and O’Neil.23

We now introduce the vorticity vector,w, as

wk5 1
2 ¹3vk , k5a,b. ~15!

Likewise, we retain only the first Fourier mode ofw,

wk5@wk,1~x1 ,x2!cosf;wk,2~x1 ,x2!cosf;

wk,f~x1 ,x2!sinf], k5a,b. ~16!

It is equivalent to formulate the hydrodynamic proble
in terms ofnk,1 , nk,2 , nk,f or in terms ofwk,1 , wk,2 , nk,f .
The equivalence between both presentations is the co
quence of the following property:

nk,15h1

]

]x1
~rnk,f!12rwk,2 ,

nk,25h2

]

]x2
~rnk,f!22rwk,1 , k5a,b. ~17!

The second representation, known as the ‘‘two-vorticity-o
velocity’’ formalism,19–21 has the advantage of leading to
set of differential equations whose derivatives are taken o
along x1 and x2 . These two-variable equations are set o
below.
Downloaded 25 Nov 2005 to 141.14.234.15. Redistribution subject to AIP
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Substituting Eq. ~17! in the equation of continuity,
¹•vk50, transforms the latter into a second-order partial d
ferential equation for thef-component of the velocity,

]

]x1
F rh1

h2

]

]x1
~rnk,f!G1

]

]x2
F rh2

h1

]

]x2
~rnk,f!G2

nk,f

h1h2

52
]

]x2
S r 2wk,1

h1
D22

]

]x1
S r 2wk,2

h2
D , k5a,b. ~18!

Eliminating the pressure from the Stokes equations~3!
provides an extensive expression of the vorticity vector
both phases,¹3¹3wk50, (k5a,b), giving a set of
second-order partial differential equations for the vortic
components,

h1

r 2

]

]x1
F rh1h2

]

]x1
S rwk,1

h2
D G1

h2

r

]

]x2

3F rh1h2

]

]x2
S wk,1

h1
D G2

wk,1

r 2

52h2

]h1

]x2

]wk,2

]x1
22S h1

]h2

]x1
1

h1h2

r

]r

]x1
D ]wk,2

]x2

2H h1

r 2

]

]x1
F rh1h2

]

]x2
S r

h1
D G

1
h2

r

]

]x2
S rh1

h2

]h2

]x1
D J wk,2 , k5a,b; ~19a!

h1

r

]

]x1
F rh1h2

]

]x1
S wk,2

h2
D G1

h2

r 2

]

]x2

3F rh1h2

]

]x2
S wk,2

h1
D G2

wk,2

r 2

52h1

]h2

]x1

]wk,1

]x2
22S h2

]h1

]x2
1

h1h2

r

]r

]x2
D ]wk,1

]x1

2H h2

r 2

]

]x2
F rh1h2

]

]x1
S r

h2
D G

1
h1

r

]

]x1
S rh2

h1

]h1

]x2
D J wk,1 , k5a,b. ~19b!

We now reformulate the boundary conditions
(x1 ,x2 ,f) coordinates. At the infinity point,x150, x2

521, the fluid is at rest, i.e.,

nb,f50, wb,150, wb,250. ~20!

As we explained in Sec. II A, contact line pinning fo
bids rolling motion, from which Eq.~2! results. In (x1 ,x2)
space, this leads to specific conditions along the left, rig
and top boundaries of the rectangular domain@see Fig. 2~b!#.
For the particle surface,x152d andx15p2d, we obtain

nk,f5V1v~zp2d!, k5a,b, ~21a!

wk,156v
r p

a
, k5a,b, ~21b!
 license or copyright, see http://pof.aip.org/pof/copyright.jsp
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h1

]nk,f

]x1
12wk,256v

zp2d

a
, k5a,b. ~21c!

In Eqs.~21!, the sign ‘‘1’’ refers to the part of the particle
surface in contact with phasea. In this case, the derivative in
Eq. ~21c! is taken atx15p2d. The sign ‘‘2’’ refers to the
b part, x152d. The trace of the contact line which was
couple of points in the (y,z) representation, transforms into
line (x250) in toroidal coordinates. Along this line, th
above condition gives

nk,f5V2vd, k5a,b, ~22a!

wk,2 sin~x11d!2wk,1 cos~x11d!5v sind, k5a,b,
~22b!

4wk,12
1

b

]nk,f

]x2
52v sinx1 , k5a,b. ~22c!

At the axis of revolution (x2521), Eq. ~9! yields

]nk,f

]x2
50, wk,150,

]wk,2

]x2
50, k5a,b. ~23!

The no-mass-transfer condition, Eq.~5!, at the interface,x1

5c, transforms into

nk,f5uf , wk,15wi ,1,

h1

]nk,f

]x1
1h1

] ln r

]x1
uf12wk,250, k5a,b, ~24!

wherewi ,1 is thex1-component of the vorticity at the inter
face. After some tedious calculations to reformulate the t
gential components of the dynamic boundary condition at
interface,S i , Eqs. ~6!–~8!, we obtain for the interface ve
locity,

1

x2
2h1

Fhb

]nb,f

]x1
2ha

]na,f

]x1
2

] ln r

]x1
~hb2ha!ufG

5~hs
dil1hs

sh!F]2uf

]x2
2 1S 11

] ln h1

] ln x2
13

] ln r

] ln x2
D 1

x2

]uf

]x2

2
2 sin2 x1

b2h2
2 ufG 12hs

shS 1

x2

] ln r

]x1
D 2

uf

22hs
dil 1

h2

]wi ,1

]x2
24~hs

sh1hs
dil!

1

h2

] ln r

]x2
wi ,1 , ~25a!

and for the interfacial vorticity,

1

x2
2h1

Fhb

]wb,1

]x1
2ha

]wa,1

]x1
1

] ln h1

] ln x2
~hbwb,22hawa,2!G

5hs
shH ]2wi ,1

]x2
2 1S 11

] ln h1

] ln x2
1

] ln r

] ln x2
D 1

x2

]wi ,1

]x2

2F 4

~12x2
2!22

2 sin2 x1

b2h2
2 Gwi ,1J . ~25b!

D. Numerical procedure

Equations~18! and~19! with the imposed boundary con
ditions Eqs.~20!–~25!, are solved numerically applying th
Downloaded 25 Nov 2005 to 141.14.234.15. Redistribution subject to AIP
-
e

basic ideas of the ADI method~see, e.g., Ref. 24!. The latter
was already employed19 for solving the problem of the mo
tion of a particle in a thin liquid film. The approach implie
introducing an artificial time variable followed by a tim
iteration procedure~see Ref. 19 for details!. Each step pro-
vides an intermediate set of numerical values for the pres
and velocity fields. The time iteration is repeated until s
tionarity is reached.

To compute the drag force,F, and torque,M , acting on
the particle, we use the following relationship:11,25

F5E
Sp,a

Pa•np,adS1E
Sp,b

Pb•np,bdS1E
Lc

Pi•ncdL,

~26a!

M5aE
Sp,a

np,a3Pa•np,adS1aE
Sp,b

np,b

3Pb•np,bdS1aE
Lc

nc3Pi•ncdL, ~26b!

wherenp,a andnp,b are the unit vectors normal to surface
Sp,a andSp,b , correspondingly.Lc is the three-phase con
tact line andnc is the unit vector perpendicular to it. The firs
two terms on the right-hand side of Eq.~26! account for the
friction experienced by the particle from the bulk phas
while the last term brings in the additional hydrodynamic
resistance from the interfaceS i . F is proportional toV and
because of the symmetry of the problem the torqueM has
only anx-component i.e.,M y50 andMz50. The computed
quantities are the particle drag coefficient,f, and the particle
torque coefficient,m, defined by

F5 f V, ~27a!

M5maVex . ~27b!

We compute reduced coefficients:f̄ 5 f / f 0 , where f 0

56phaa is the Stokes drag coefficient in phasea and m̄
5m/m0 , where m058phaa is the Kirchoff’s rotation
torque coefficient in phasea. Input parameters of the com
putation are: the viscosity ratio,hb /ha , the shear and dila-
tional viscosity numbers,

E5
hs

sh

aha
and K5

hs
dil

aha
, ~28!

the size ratio,R/a, and the scaled penetration depth,d̄
5d/a ~for d̄521 the particle is completely immersed in th
enclosed phasea and for d̄51 in phaseb!. The numerical
code is written in FORTRAN and usually run on a PC
Pentium-MMX computer. The program is made of four mo
ules. The first module starts with a coarse periodic samp
of the (x1 ,x2) domain and calculates the values of t
f-component of the velocity and thew1 andw2 components
of the vorticity vector. The following modules work with
increasing sampling densities and provide increasingly ac
rate velocity fields. The final module assures a precision
about 0.02% for the calculated velocity values~there is no
essential difficulty for increasing the precision by using mo
powerful machines!. However the drag and torque coeffi
 license or copyright, see http://pof.aip.org/pof/copyright.jsp
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FIG. 3. Velocity field in thex50 plane~distances are scaled to particle radius! for a spherical particle moving iny-direction with velocityV; ha /hb51,
E50, K50, R/a510. In ~a! and ~b! d̄520.5, in ~c! and ~d! d̄50.5; ~a! and ~c! present the velocity distribution in a (x1 ,x2) lattice, the gray hemisphere
represents the particle, and the dotted line denotes the interface position. Thex15const andx25const circles can be recognized as the loci of the velocity fi
vectors’ origins.~b! and~d!: Same numerical data in Cartesian lattice, the solid line denotes the interface position. The broken curve represents the co
~in perspective, artificially!.
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cients are computed with lower precision~61%! because of
the integrations in Eq.~26!. The computing time depends o
the values of the input parameters and on the required
merical accuracy. For typical inputs such asha /hb51, E
52, K50, R/a55, andd̄50, it takes about 2 h to compute
f̄ andm̄ with the highest precision. Bringingd̄ close to61
demands increasing the (x1 ,x2) sampling density and make
computation several times longer. Whend̄561, the set of
circles corresponding tox25const@see Eq.~12b!# collapses
to the origin (r 50, z50), i.e., to the particle-VDB contac
point. Because of this limitation, the numerical procedure
inapplicable to the case of a particle tangent to the interfa
The numerical results presented in the following sect
were obtained by running the program on a PC-Pentium
computer. The maximum computation time was limited
about 50 h, which imposed a limitation of the particle po
tion to ud̄u>0.9. This corresponds to a contact angle@u, see
Fig. 1~b!# between 25 and 155°.

III. NUMERICAL RESULTS AND DISCUSSION

A. Inviscid spherical interface: Recirculation effect

To visualize the events occurring as a consequenc
the particle motion along the interface, we calculated
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(Oy,Oz) profile of the velocity field in thex50 plane for
two different penetration depths of the particle. Figure 3~a!
shows the result for anonviscous interface(E5K50) and
for similar a and b phases (ha /hb51). In Figs. 3~a! and
3~b! the particle strongly penetrates into the VDB interi
(d̄520.5) while in Figs. 3~c! and 3~d! the penetration is
weak (d̄50.5). The size ratio,R/a, is everywhere510. The
particle is presented in gray and the dotted curve is
spherical interface,S i . Because of the symmetry in the ve
locity field, n(x,y,z)52n(x,2y,z), it is sufficient to show
only they.0 side. In Figs. 3~a! and 3~c! the representation
corresponds to a periodic sampling of the (x1 ,x2) domain,
while in Figs. 3~b! and 3~d! a standard grid in the (y,z) plane
is used. Note that (x1 ,x2) sampling ensures a high mappin
density of the region close to the particle surface, and t
optimizes the accuracy in the velocity field entering Eq.~26!.

The range of the perturbation caused by the particle m
tion is readily seen in Figs. 3~b! and 3~d!. At large distances
in the continuous phase,b, the velocity drops down to zero
~undisturbed fluid!. The influence of the solid particle is no
very far reaching. At distances of six times the particle
dius, the velocity in they-direction is less than 0.2V,
whereas in thez-direction the velocity profile is quickly
damped down to the same value already at distances
 license or copyright, see http://pof.aip.org/pof/copyright.jsp
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than a particle diameter, see Figs. 3~b! and 3~d!. When
choosing zero interface viscosity numbers~nonviscous inter-
face! we want to emphasize the effect of just the finite size
the VDB. The spherical shell,S i , plays the role of a wall
blocking the flow lines which are forced to follow its con
tour. The flow ina phase is looped inside the finite volum
encompassed by the interface. This is an example of ‘‘re
culation,’’ similar to that encountered in the problem of t
motion of a particle in a closed box.26 This recirculation is
most pronounced when the particle is more deeply immer
in the enclosed phase,d̄520.5 @see Fig. 3~b!#. The less the
particle portion in phasea, the weaker the perturbation~re-
circulation!.

Figure 4 shows the incidence of the flow confinement
the value of the particle drag and torque. In Fig. 4~a!, the
dimensionless friction coefficient,f̄ , is plotted as a function
of the scaled penetration depth,d̄, for systems with different
size ratios,R/a. Again the surface viscosity is chosen to
zero (E50, K50). The lower limit for f̄ is just 1 (f 5 f 0).
This limit is approached for large size ratios@R/a'50 in
Fig. 4~a!# when the particle feels the interface as flat a
infinite. When the VDB size is decreased to ten times

FIG. 4. Size ratio effect for a nonviscous interface (E50, K50). Dimen-
sionless drag coefficientf̄ ~a! and torque coefficientm̄ ~b!, as a function of
penetration depth,d̄, for different size ratios,R/a ~see the inset!, ha /hb

51.
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size of the particle, the finite volume effect becomes d
tinctly pronounced. The behavior off̄ is as expected: the
deeper the particle penetration, the larger the friction ra
Even at weak penetration (d̄50.9), where a very small por
tion of the particle~about 8% forR/a510) is in the enclosed
phasea, we observe a noticeable increase inf̄ . The behavior
of the dimensionless torque coefficientm̄ is illustrated in Fig.
4~b!. All other parameters are the same as in Fig. 4~a!. For
large size ratios,R/a, the torque coefficient is symmetri
with respect to the particle penetration depth. When
membrane is flat (R/a@1), the particle performs a pur
translational motion. Whend.0 ~see Fig. 1!, the hydrody-
namic torque tends to make the particle rotate counterclo
wise. We find the same sense for the torque as that foun
Lee and Leal27 for a particle close to but not in contact wit
a plane interface (d̄.1). Following Lee and Leal,27 we de-
fine the torque as positive in this case.

Of course, the particle rotation is forbidden by th
contact-line-pinning condition, as we explained in Sec. II
In other words, the hydrodynamic torque is counteracted
a mechanical torque from the membrane at the level of
contact line. When the size ratio decreases, the particle
forms a rotational motion as well, whose angular velocity
given by Eq.~1!. Because of this rotation, the flow velocit
around the upper part of the particle is larger than around
bottom part~see the flow fields in Fig. 3!. This has the con-
sequence of making the torque more positive, whatever
particle’s penetration. WhenR/a,5, the torque become
positive for all penetrations. For intermediate size ratios, e
R/a510, the torque is negative only whend̄,20.4, i.e.,
when the particle is largely inside the VDB@for instance, as
in Fig. 3~a!#.

Note that um̄u is everywhere moderate~,0.35!, which
means that the computed values of the torque are defin
less than 3pha2V in absolute value. As discussed in th
Appendix, such torques cannot definitely distort the VD
shape in usual experimental conditions with lipid vesicles

B. Flat infinite interface: Comparison with Saffman’s
disc problem

When R/a→`, finite-size effects obviously disappea
Analyzing the problem for a flat interface simply amounts
choosingc50 @see Fig. 1~a!#. We calculated the drag an
torque coefficients for three different values of the surfa
viscosity, again supposingha5hb . The data are presente
in Fig. 5. Each of the curves is symmetrical aboutd̄50
because of the symmetry of the system about the inter
S i . In the case of an inviscid interface (E50, K50), the
only factor influencing the friction is the particle position
i.e., d̄. The base curve for the drag coefficient in Fig. 5~a!

~dotted line! has its minimum atd̄50 when the sphere equa
tor is located in the interface plane. In this situation, t
streamlines are identical to those for the same particle in
bulk fluid; then f 5 f 056pha, the sphere Stokes friction
When d̄Þ0, the interface perturbs the streamlines of t
Stokes flow and this results in increasing the friction. Th
explains why the bottom curve in Fig. 5~a! is concave. Con-
 license or copyright, see http://pof.aip.org/pof/copyright.jsp
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versely, when the interface is very viscous (E55, solid line!,
the curve becomes convex. Here the drag coefficien
mainly influenced by the interface friction rather than
hydrodynamic perturbations in bulk phases. The drag coe
cient arrives at a maximum whend̄50. In that position the
intersection area of the particle with the viscous surface
the largest (b5a), which leads to a greater resistance.
general, the sphere drag coefficient may be decompose
f 5 f 01 f exc, wheref exc is an excess friction. The decompo
sition gets a simple physical significance when the interf
viscosity is large (E@1). In this limit, f exc essentially rep-
resents the friction which the interface opposes to the mo
of the contact line, in other words of the disc~of radiusb!
which the particle intercepts in the interface plane. WhenE
;1, f exc is influenced by both the streamlines’ perturbati
in bulk phases and by the plane disc friction. Because of
competition between these two mechanisms, thef̄ (d̄) curve
evolves from concave to convex whenud̄u increases@Fig.
5~a!, E51#. Results for the hydrodynamic torque acting
the particle are shown in Fig. 5~b!. Because the membrane
supposed flat, all curves are odd ind̄. Note thatum̄u,0.35
whenE,5, which again means that the torque is definite

FIG. 5. Reduced friction~a! and torque~b! of a spherical particle across
flat interfaceK50 andha /hb51. The dotted line corresponds to a nonvi
cous interface,E50; the broken and solid lines toE51 andE55, respec-
tively.
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less thanm0 , the Kirchoff’s value corresponding to an an
gular velocity equal toV/a. The 3D fluids on both sides o
the membrane are supposed identical, as before~results for
water/air interface are given in Ref. 11!.

The curve corresponding toE50 is the same as that in
Fig. 4~b! in the infiniteR/a limit. Whend.0, the flow wants
to make the particle rotate counterclockwise, i.e.,m̄ is posi-
tive. When the membrane viscosity increases, so does
friction on the side of the particle in contact with the mem
brane. Then (d.0 andE very large! the interfacial friction
tends to make the particle rotate clockwise. IfE is large
enough, the torque becomes negative. The influence of
interfacial friction has a maximum at some finite penetrat
depth, d̄ ~about60.7 for E55). Beyondd̄, um̄u decreases
because the size of the contact line rapidly decreases.

It is interesting to compare the friction of the spheric
particle to that of a disc with the same contact line. Thus
come back to Saffman’s problem, for a disc of radiusb and
same thickness as that of the membrane. Saffman’s equa
for the disc friction coefficient reads

f disc5hs
sh 4p

lnS l

bD2g

, ~29!

where l is a characteristic length,g is Euler’s constant
~50.5772...!. In the standard situation of an infinite mem
brane inside a continuous phase of bulk viscosityh, l
5hs

sh/h ~we recall that the shear surface viscosity has
dimension of a bulk viscosity3length!. Equation ~29! is
valid whenb/ l !1 ~there is no such restriction in the gene
alized theory of Hugheset al.4!. The important and some
what counterintuitive idea conveyed by Eq.~29! is that the
disc friction depends only marginally on its size. Becausb
intervenes only through a logarithm,f disc remains on the or-
der of hs

sh, whateverb. Our analysis for low viscosity num
bers, see Fig. 4~a! (E,2), also demonstrates a very wea
dependency of the spherical particle drag coefficient on
particle penetration, or equivalently, on the radius of t
disc, b, that the particle intercepts in the membrane. T
analogy with Saffman’s disc problem suggests that
spherical particle excess friction follows an equation simi
to Eq. ~29!,

f exc5hs
shgS l

bD , ~30!

whereg is a slowly varying function; Eq.~29! is equivalent
~for h5ha5hb) to

f̄ exc[ f̄ 215
E

6p
gS E

sinu D . ~31!

In Fig. 6 the reduced excess frictionf̄ exc/E is plotted versus
E/sinu. The broken line was computed for a constant an
u590° (d̄50) and 1<E<100. The gray zone marks th
numerical error band for the computed data. We do fin
slowly varying function, which can be approximated by
power low ~solid line! with a very weak exponent,

g~x!'2.93x20.116 ~u590°,1<x<100!. ~32!
 license or copyright, see http://pof.aip.org/pof/copyright.jsp
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This power low fits to the computed values within numeric
error. Equations~30!–~32! show thatf exc'2.9hs

sh for a5 l
and only decreases down to 1.4hs

sh for a50.01l . Note that
Eq. ~32! only holds foru590° (d̄50). We thus find that the
excess friction of a macroscopic spherical particle wh
center lies in the membrane plane~u590°! behaves similarly
to the disc friction in Saffman’s theory. Nevertheless no
that the similarity is only qualitative@Eqs.~28! and ~32! are
quantitatively different#, which means that Saffman’s equ
tion, Eq. ~29!, cannot be used to interpret data with mac
scopic spherical particles.28 In their most general form~with
variableu!, Eqs.~30! and ~31! suggest that the dependen
of f exc on b might be universal, i.e., independent of the co
tact angle. If it were so, increasing the particle size wh
increasingudu so as to keepb5a sinu5constant should no
significantly modify f exc. For instance, a small sphere,a
51 mm, u590°, and a large one,a53 mm, u520°, should
have the same friction. We tested this conjecture forE52
andE55 and found that it was valid within the error ban
only for angles not too far from 90°, say 45°<u<135°. For
small ~or large, symmetrically! contact angles, the particl
friction is inferior to that foru590°, at constantb. In fact,
this difference is not surprising; coming back to the abo
given example, it is clear that the velocity fields correspo
ing to the small and large spheres are necessarily diffe
and so are the particle frictions. Nevertheless, this differe
becomes negligibly small whenudu,0.7.

As we discussed before, our procedure does not allow
to compute the particle drag coefficient in thed̄561 limit,
i.e., when the particle is tangent to the interface. Nevert
less, when the viscosity is not too largef̄ (d̄561) can be
found by extrapolating thef̄ (d̄) curve. For instance, we find
f̄ (d̄561)>1.05 for a nonviscous interface (E50) between
two fluids of equal viscosities (ha5hb). Interestingly, the
d̄561 configuration can be found as a limit situation too,
the case of a sphere near to, but not in contact with a

FIG. 6. Scaled excess frictionf̄ exc/E versusE/sinu for a flat infinite mem-
brane. See text and figure insert for definition of symbols. The gray b
represents the estimated uncertainty of the computed values off̄ exc/E. As
the relative uncertainty off̄ is about constant, that off̄ exc/E diverges when
f̄→1, i.e., whenE→0.
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interface. A numerical exact solution to this problem w
worked out by Lee and Leal27 for a nonviscous interface
recently the same problem was generalized to a flat visc
interface by Danovet al.29 The sphere tangent to the inte
face configuration corresponds to thed̄51 limit in Lee and
Leal’s notation. Their result forl5ha /hb51 is f̄ (d̄51)
>1.051,which is in agreement with ours. We checked th
this agreement remained true with viscous films (E<2) us-
ing data from Danovet al.29

C. General situation: Spherical viscous interface

Having discussed the limit situations of a finite-size i
viscid interface and that of flat infinite viscous interface, w
now come to the general problem of a spherical viscous
terface. Making the interface viscous obviously increases
particle friction. For a large number of systems to which t
problem relates, the dilational and the shear surface visc
ties are of the same order of magnitude. It is quite comm
that they differ by a factor of 0.2 up to 5. Conversely, f
biological membraneshs

dil and hs
sh differ by several~4–5!

orders of magnitude.30 Since this work is mainly dedicated t
lipid membranes,12,31 we will put K50. Figure 7 presents
numerical data for four systems with different paramet
indicated in the legend. For the three upper curves the
face shear viscosity number isE52 andR/a varies between
3 and 10. To facilitate the comparison, the base curve p
sents numerical results (E50, R/a55) already displayed in
Fig. 4~a!. The main feature in Fig. 7 is the upward shift
the friction values~for R/a55) in the whole interval ofd̄.
The effect is noticeable even for penetrations correspond
to d̄50.9 ord̄520.9 when the size of the disc,b, which the
particle intercepts in the interface is!a. However, the vis-
cosity influence forE52 does not overpower the finite-siz
contribution and as a whole the curves preserve their ne
tive slope tendency. An interesting point to note is that
three upper curves converge to one and the same value

d

FIG. 7. Dimensionless drag coefficient,f̄ , as a function of penetration
depth,d̄, for different size ratios,R/a, and shear surface viscosity number
K50, ha /hb51. The dotted curve corresponds toE50 ~the numerical data
are the same as in Fig. 4, see legend!. The three upper curves present resu
for E52.
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small penetrations (d̄50.9), in contrast to the behavior ob
served with the inviscid membrane,E50 @see Fig. 4~a!#.
Obviously, in this region the interface viscosity dominat
the flow confinement effect.

Figure 8 shows results for high shear viscosity numbe
The friction coefficient is plotted as a function of the si
ratio, R/a, of the VBD-particle complex. Here we consid
the general situation wherea and b may be different, and
plot (ha /hb) f̄ . In other words the friction coefficient pre
sented in the figure is scaled by the Stokes friction not
phasea as in the previous figures, but in phaseb. Only for
curve b, solid line, the viscosity ratio is different from
ha /hb51.5. For all curvesd̄ is set50. The novel effect in
the figure is the growth of the friction for largeE ~two upper
curves! when the size ratio increases. We recall that for sm
values of the shear viscosity (E52), f̄ is a decreasing func
tion of R/a ~see Fig. 7!. Figure 8 demonstrates an oppos
behavior whenE is very large. The interpretation of thi
apparently paradoxical result lies in the possibility of t
VDB-particle complex to rotate as a whole inb phase. In the
limit of an infinite membrane viscosity, the VDB-particl
complex may be viewed as a rigid body. The friction i
volved in the particle motion is then the rotational friction
the whole complex inb phase. Obviously, this friction in
creases whenR increases. The upper limit off̄ for d̄→21
may be estimated from the Kirchoff equation25,32 for a rotat-
ing sphere; both upper curves on the figure are below
limit. We find:32 f̄→4R/3a whenhs→`. The overall rotat-
ing effect acts oppositely to the above described recircula
effect. The influence of the latter is obviously more pr
nounced for ‘‘less rigid’’~less viscous! surfaces. The dotted
line, curve a,E50, ha /hb51, represents the extreme ca
of an inviscid interface for identicala and b phases. The
lower limit of the curve at infinity is set by the net Stoke
resistance (f̄ 51). Curve b, solid line (ha /hb51.5, E
50), shows that increasingha results in increasingf̄ , but
the general tendency of the curve is preserved as a who

FIG. 8. Friction coefficient scaled to Stokes resistance for phaseb. K50,
d̄50. The two upper curves present results for high shear surface visc
(E530 andE51000) and a viscosity ratioha /hb51. The dotted line,
curve~a!, corresponds to a nonviscous surface,E50 andha /hb51, while
the solid line, curve~b!, is calculated forE50 andha /hb51.5.
Downloaded 25 Nov 2005 to 141.14.234.15. Redistribution subject to AIP
s

s.

n

ll

at

n
-

.

The slightly positive slope of the third curve (E530) in
Fig. 8 indicates that both recirculation and overall rotati
are operative in this case. We expect rigid rotation to be
leading mechanism for smallR/a; conversely, whenR is
very large, rotating the VDB as a whole costs too much
terms of dissipation and it is preferable for the particle
shear the interface. Ultimately, whenR→`, we are back to
the situation of an infinite interface, with obviously no ove
all motion. Size ratios in Fig. 8 (2<R/a<5) are intermedi-
ate between theR→0 andR→` regimes. For illustration,
the flow field corresponding toE530, R/a53, ha5hb , is
shown in Fig. 9, in toroidal coordinates representation. T
existence of a partial overall rotation of the system is evid
from the slow decrease of the velocity along the interfa
compare with Figs. 3~a! and 3~b!. However, note that the
flow pattern inside the VDB is not cylindrical~the vortex is
not located at about mid-distance between the particle
the VDB center and follows the particle motion!, which
means that part of the dissipation takes place in the V
interior.

IV. CONCLUSIONS

The theoretical study presented in this work was aim
at assessing the friction coefficient for systems where
curvature of the interface influences the resistance exp
enced by the floating particle. The model refers to slow m
tion in the Stokes’ regime and small capillary numbers and
applicable both to curved and flat interfaces. The appro
accounts for the viscous properties of the surface.

A toroidal coordinate system was introduced allowi
decoupling of the coordinate variables. The hydrodynam
equations and boundary conditions were transformed follo
ing the two-vorticity-one-velocity formalism, which allowe
us to eliminate thef-coordinate, thus reducing the proble

ity

FIG. 9. Velocity field for a particle on a very viscous interface (E530).
Input parameters areha /hb51, K50, R/a53, d̄50. The velocity field is
shown in toroidal coordinates lattice presentation. The dotted line shows
position of the spherical interface.
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to a two-variable one. The numerical solution was achie
employing the ADI method with a second-order precision

The performed analysis on the influence of different fa
tors demonstrated a considerable contribution to the fric
coefficient both from the finite size of the enclosed fluid a
from the surface shear viscosity. An interesting prediction
the numerical calculations is the possible rotation of
particle/interface complex as a whole when surface visco
is increased, i.e., when the particle is blocked on the sph
cal shell.

Finally, the theory makes feasible the interpretation
experiments based on the ‘‘falling ball viscosimetry
method independently of the size ratio of the vesicle/part
complex.31 Moreover, the approach is applicable to syste
where the fluids on both sides of the interface are of differ
viscosities. This happens in emulsions stabilized by so
particles~so-called Pickering emulsions!.
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APPENDIX: DOES THE PARTICLE MOTION PERTURB
THE SHAPE OF THE INTERFACE?

Since we supposed a spherical VDB, we implicitly a
sumed that the particle motion would not modify the sha
of the interface. We expect this assumption to be appro
mately valid whenever the capillary number,Ca5hV/s, is
much inferior to 1. Heres is the interfacial tension. Roughly
Ca represents the ratio of the friction force,F, to the surface
tension force,Fcap, acting on the particle. As we argue in th
discussion,F remains on the order of the Stokes frictio
(F}6phaV) in the bulk fluid. The capillary force is on th
order of 2psb52psAa22d2. We thus find the above re
sult for Ca wheneverudu is not close toa, i.e., when the
particle is well across the interface. Equivalently,Ca repre-
sents the ratio of the viscous torque (}ha2V) to the capillary
torque (}sba) acting on the particle. To estimateCa in
typical conditions, we may putV}(2/9)a2Drg/h, the par-
ticle sedimentation velocity in the bulk fluid. With polysty
rene spheres in water anda>5 mm ~this corresponds to the
experiments in Dietrichet al.29!, hV is of the order of
1025 dyn/cm. Correspondingly small values of the interf
cial tension exist only with so-called ‘‘quasi-spherica
vesicles, whose shapes are fluctuating under ther
agitation.33 Vesicles with no visible thermal fluctuation
have tensions at least of the order of 0.1 dyn/cm.30 In con-
clusion, a vesicle~or a VDB in general! which appears
spherical under the microscope, corresponds toCa!1.
Strictly speaking, this condition cannot remain valid wh
udu>a, i.e., when the contact line reduces to a pointb
→0). However, the value ofCa is definitely increased only
when b is extremely small, which meansd/a very close to
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61. As we explain in Sec. II B, the mapping of the (r ,z)
plane by toroidal coordinates fails in thed̄→61 limit. For
this reason, the accuracy of the numerical procedure con
erably decreases when the size of the contact line beco
small compared toa. Keeping the computing time within
reasonable limits~>50 h!, the friction coefficient can be
computed within about61% only whenb.0.1a. In such
conditions,Ca is not considerably larger thanhV/s, and,
consequently, the above estimate for the validity of t
theory remains in force. In other words, there is no risk t
a computed value of the particle drag coefficient be phy
cally wrong because the interface shape could be distorte
the particle motion.
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